an = (a(n-1)+2)/(2a(n-1)+1)
an -1 =(a(n-1)+2)/(2a(n-1)+1) -1
= -(a(n-1)-1)/(2a(n-1)+1)
1/(an -1) = -(2a(n-1)+1)/(a(n-1)-1)
= -2 - 3/(a(n-1) -1)
1/(an -1) + 1/2 = -3[1/(a(n-1) -1) +1/2]
{1/(an -1) + 1/2}是等比数列, q=-3
1/(an -1) + 1/2 = (-3)^(n-1) .(1/(a1 -1) + 1/2)
=-(1/2)(-3)^n
an -1 = -2/[1 + (-3)^n ]
an = 1 - 2/[1 + (-3)^n ]