高数导数问题设f(x),g(x)在R上有定义,且对任意x,y属于R 有f(x+y)=f(x)g(y)+f(y)g(x)

1个回答

  • 根据导数定义,f(x)可导即为以下极限存在:

    lim(h->0) (f(x+h)-f(x))/h

    而:

    lim(h->0) (f(x+h)-f(x))/h = lim(h->0) (f(x)g(h)+f(h)g(x)-f(x))/h

    = lim(h->0) f(x)(g(h)-1)/h + lim(h->0) f(h)g(x)/h

    = f(x)lim(h->0) (g(h)-1)/h + g(x)lim(h->0) f(h)/h

    其中:

    (1)

    lim(h->0) (g(h)-1)/h = lim(h->0) (g(h)-g(0))/h = g'(0) = 0

    (2)

    lim(h->0) f(h)/h =lim(h->0) (f(h)-0)/h = lim(h->0) (f(h)-f(0))/h = f'(0) = 1

    所以

    lim(h->0) (f(x+h)-f(x))/h = f(x)*0+g(x)*1 = g(x)

    即极限存在且等于g(x),因此f'(x)存在且等于g(x)