tana+tanb=4
tana*tanb=-2
tan(a+b)=(tana+tanb)/(1-tanatanb)=4/3
tan(a+b)=sin(a+b)/cos(a+b)=4/3
sin(a+b)=4cos(a+b)/3
[sin(a+b)]^2+[cos(a+b)]^2=1
所以[sin(a+b)]^2=16/25
[cos(a+b)]^2=9/25
因为sin(a+b)/cos(a+b)=4/3〉0
所以sin(a+b)*cos(a+b)〉0
所以sin(a+b)*cos(a+b)=根号(16/25*9/25)=12/25
所以原式=9/25+2*12/25-2*16/25
=1/25