S(20)=(a1+a20)*20/2=10(a1+a20)=10(a3+a18)
10(a3+a18)=120
a3+a18=12
对等差数列{an}
有若i+j=m+n
则a(i)+a(j)=a1+(i-1)d+a1+(j-1)d
=2a1+(i+j-2)d
=2a1+(m+n-2)d
=a1+(m-1)d+a1+(n-1)d
=a(m)+a(n)
即下标和相等的任意两项相加之和都相等
S(20)=(a1+a20)*20/2=10(a1+a20)=10(a3+a18)
10(a3+a18)=120
a3+a18=12
对等差数列{an}
有若i+j=m+n
则a(i)+a(j)=a1+(i-1)d+a1+(j-1)d
=2a1+(i+j-2)d
=2a1+(m+n-2)d
=a1+(m-1)d+a1+(n-1)d
=a(m)+a(n)
即下标和相等的任意两项相加之和都相等