取CD的中点为E,取AC的中点为F,连接BE,EF,BF,则有EF=1/2AD=1/2
由题意得,BE⊥CD,AD⊥CD,∵EF‖AD ∴EF⊥CD∴∠BEF为所求的二面角
∵△BCD为边长为1的等边三角形
∴BE^2+CD^2=BC^2 解得BE=~3/2
又∵△ABC为等腰直角三角形
∴BF^2+CF^2=BC^2 解得BF=~2/2
∴BE^2=BF^2+EF^2 ∴△BEF为直角三角形
∴sin∠BEF=BF/BE=(~2/2)/(~3/2)=~6/3
∴∠BEF=arcsin(~6/3)
注:BE^2表示BE的平方,3表示根号3,其它的表示类似!