若实数abc满足 a+b+c=a^2+b^2+c^2,则a+b+c的最大值

2个回答

  • 实数abc

    a+b+c=a^2+b^2+c^2移项,得:

    a^2+b^2+c^2-a-b-c=0两遍加3/4,得:

    a^2-a+1/4+b^2-b+1/4+c^2-c+1/4=3/4构成平方,得:

    (a-1/2)^2+(b-1/2)^2+(c-1/2)^2=3/4 [1]式子

    需要用到√[(a^2+b^2+c^2)/3]>=(a+b+c)/3变形:(此后证明在结尾)

    (a^2+b^2+c^2)/3>=[(a+b+c)/3]^2再变形:

    (a^2+b^2+c^2)>=3*[(a+b+c)/3]^2把[1]式子套用公式得:

    3/4=(a-1/2)^2+(b-1/2)^2+(c-1/2)^2>=3*[(a-1/2+b-1/2+c-1/2)/3]^2变形:

    3/4>=[(a+b+c-3/2)^2]/3再变形:

    (a+b+c-3/2)^2=0

    展开2a^2+2b^2+2c^2-2ab-2bc-2ac>=0

    2a^2+2b^2+2c^2>=2ab+2bc+2ac

    同时加a^2+b^2+c^2

    a^2+b^2+c^2+2a^2+2b^2+2c^2>=a^2+b^2+c^2+2ab+2bc+2ac

    3(a^2+b^2+c^2)>=(a+b+c)^2

    (a^2+b^2+c^2)/3>=(a+b+c)^2/9

    若a+b+c(a+b+c)/3肯定成立

    若a+b+c>=0则开方

    √[(a^2+b^2+c^2)/3]>=(a+b+c)/3 综上

    √[(a^2+b^2+c^2)/3]>=(a+b+c)/3

    当a=b=c且大于0时取到