证明:(1)过A作AH垂直于BC于H
过A作AE垂直于DC于E
易得三角形AHB全等于三角形AED
所以AH=AE
因为∠ADE=∠DAQ ∠AQD=∠PAD ∠QAD=60°
所以∠DAP=∠AQD
因为∠DAP=∠APH
所以∠APH=∠AQD
易得三角形AEQ全等于三角形AHP
所以AP=AQ
所以△APQ为等边三角形
(2)∠ABH=60° AB=4
BH=2 AH=2*根号3
HP=x-2
在RT三角形AHP中
勾股定理
得函数解析式为y=根号(x^2-4x 16)
(3)有两种情况
1.当P在BC延长线上时
根据等腰三角形性质
易得PD平分∠ADQ
因为AD平行BC
所以∠ADQ=∠BCQ=120°
易得∠DPC=120°/2=60°
因为∠DPA=30°
所以∠APC=30°
因为∠B=60°
所以∠BAP=90°
所以BP=2BA=8
2.当P在BC上时
易得PQ为菱形ABCD一条对角线
所以B,P重合
BP=0