1.设P、Q移动x秒,则AP=x,AM=3/5x,PM=4/5x.点P的坐标是(3-3/5x,4/5x).
2.OQ=x,S△OPQ=1/2*OM*OQ=1/2*(3-3/5x)x=3/2x-3/10x².原式=-3/10(x-5/2)²+15/8.极值是15/8.
3.OQ为斜边时,x²=(3-3/5x)²+(1/5x)².解得:x=-3+2根号6.
BP为斜边时:(4-x)²+(3-3/5x)²=(5-x)²,解得x=40/9.
4.若PQ=PO,则(3-3/5x)²+(1/5x)²=(3-3/5x)²+(4/5x)².解得x=0,所以△OPQ一定不是等边三角形.