求导隐函数x/y+√(y/x)=1 sin(xy)-ln[(y+1)/y]=1,求y‘(0)

1个回答

  • x/y+√(y/x)=1

    两边对x求导:(y-xy')/y^2+1/[2√(y/x)]*(y'x-y)/x^2=0

    2x^2(y-xy')+y^2(xy'-y)/√(y/x)=0

    这样只能得y-xy'=0,得:y'=y/x

    (这题从方程即可求得y=kx,其中k为常数)

    sin(xy)-ln[(y+1)/y]=1

    两边对x求导:cos(xy)(y+xy')-y'/(y+1)+y'/y=0

    x=0代入原方程,有-ln[(y+1)/y]=1,即(y+1)/y=1/e,得:y(0)=e/(1-e)

    将x=0,y=y(0),代入求导后的方程得:

    e/(1-e)-y'(0)*(1-e)+y'(0)(1-e)/e=0

    解得:y'(0)=-e^2/(1-e)^3