分子分母同除以x^2
f(x-1/x)=(x-1/x)/(x^2+1/x^2)
(x-1/x)^2=x^2-2+1/x^2
x^2+1/x^2=(x-1/x)^2+2
所以f(x-1/x)=(x-1/x)/[(x-1/x)^2+2]
所以f(x)=x/(x^2+2)
分子分母同除以x^2
f(x-1/x)=(x-1/x)/(x^2+1/x^2)
(x-1/x)^2=x^2-2+1/x^2
x^2+1/x^2=(x-1/x)^2+2
所以f(x-1/x)=(x-1/x)/[(x-1/x)^2+2]
所以f(x)=x/(x^2+2)