由第一问,an-2n=2*(a(n-1)-2(n-1)),则an-2n=(a1-2)*2^(n-1)
又由Sn=2an+n^2-3n-2令n=1,有a1=S1=2a1+1-3-2,解得a1=4
因此an-2n=(4-2)*2^(n-1)=2^n
则
bn=an-2^n=2n
对Tn的通项,有
(n+1)/bn×b(n+1)×b(n+2)
=(n+1)/2n×2(n+1)×2(n+2)
=1/8n(n+2)
=1/16*[1/n-1/(n+2)]
因此
Tn=1/16*[1-1/3+1/2-1/4+…+1/n-1/(n+2)]
=1/16*[1+1/2-1/(n+1)-1/(n+2)] (奇数项和偶数项可以分别前后相消)
=1/16*[3/2-(2n+3)/(n+1)(n+2)]
由Tn