已知四面体ABCD,沿棱AB、AC、AD剪开,铺成平面图形,得到△A1A2A3(如图),试写出四面体ABCD应满足的一个

1个回答

  • 解题思路:仔细观察,发现展开后的图形是三角形,A1,A2,A3,三点与A重合,只要满足题意的一个性质即可.

    仔细观察,发现四面体ABCD,沿棱AB、AC、AD剪开,铺成平面图形,展开后的图形是三角形,A1,A2,A3,三点与A重合,不妨四面体是正四面体即可满足题意.

    故答案为:四面体是正四面体;或者四面体的三个角B,C,D处的三个角的和都是180°.

    点评:

    本题考点: 棱锥的结构特征.

    考点点评: 本题是中档题,考查几何体的折叠与展开,注意这两科后的图形的特征是解题的关键,同时注意到特殊图形的应用.