(e^(-x)*f(x))'=e^(-x)*f'(x)-e^(-x)*f(x)=e^(-x)*【f'(x)-f(x)】=0,因此
e^(-x)*f(x)是常数函数,且e^(0)*f(0)=1,于是有
e^(-x)*f(x)=1,f(x)=e^x.