由题意,得
y'=2x+y
y(0)=0
j解y‘=2x+y
y’-y=2x
y=e^∫dx[∫2xe^(-∫dx)dx+c]
=e^x(-2xe^(-x)-2e^(-x)+c)
代入x=0,y=0,得
0=-2+c
c=2
所以
方程为
y=e^x【-2xe^(-x)-2e^(-x)+2】
由题意,得
y'=2x+y
y(0)=0
j解y‘=2x+y
y’-y=2x
y=e^∫dx[∫2xe^(-∫dx)dx+c]
=e^x(-2xe^(-x)-2e^(-x)+c)
代入x=0,y=0,得
0=-2+c
c=2
所以
方程为
y=e^x【-2xe^(-x)-2e^(-x)+2】