过椭圆x^2/9+y^2=1的左焦点F的直线l与椭圆交于PQ.若P,Q的距离等于短轴长,求直线l的倾斜角?

1个回答

  • 左焦点F坐标为(-2√2,0).

    设直线斜率为k,方程为y=k(x+2√2),代入x^2/9+y^2=1并消去y得:

    (1+9k²)x²+36√2k²x+9(8k²-1)=0,

    判别式△=36²×2k^4-36(1+9k²) (8k²-1)

    =36[72 k^4-(72 k^4- k²-1)]=36(1+k²).(本题难点就在化简判别式上!)

    根据弦长公式:

    |PQ|=√(1+k²)•√△/|a|=√(1+k²)•√[36(1+k²)]/(1+9k²)

    =6(1+k²) /(1+9k²)

    椭圆短轴长为2,所以6(1+k²) /(1+9k²)=2,

    k=±√3/3,所以直线倾斜角为30°或150°.