1.正面思路:首先只看一条线段与投影中心的面,那么可以知道投影中心,原线段,成影的线段可以构成两个相似三角形,原线段与投影线段平行.那么同理另一条线段也与它的投影线段平行,所以由平行的传递性可知四条线都平行,即两投影线段平行不相交.多条平行线段的投影类似推广即可.
2.反证法就是:假设射影相交,那么因为原线段与其投影平行,但投影相交,得出原线段相交,矛盾,从而得投影平行.
3建系,就是又上面所给的方法给出投影各个点的解析式.由于分母不为〇可以去掉两个点.可以验证这两个点分别满足两参数方程,只是不满足分母不为零的条件.或者说两条线段都舍去同一个点,把它理解为交点的话,就是满足题设的交点不存在了.所以得出投影平行.