∵1/n(n-1)=[n-(n-1)]/n(n-1)=1/(n-1)-1/n
∴1/(1*2)=1/1-1/2; 1/(2*3)=1/2-1/3.
原式=1/(1*2)+1/(2*3)+1/(3*4)+1/(4*5)+.+1/(10*11)
=1/1-1/2+1/2-1/3+1/3-1/4+.+1/10-1/11
=1-1/11
=10/11
∵1/n(n-1)=[n-(n-1)]/n(n-1)=1/(n-1)-1/n
∴1/(1*2)=1/1-1/2; 1/(2*3)=1/2-1/3.
原式=1/(1*2)+1/(2*3)+1/(3*4)+1/(4*5)+.+1/(10*11)
=1/1-1/2+1/2-1/3+1/3-1/4+.+1/10-1/11
=1-1/11
=10/11