1解f(x)=sin2x+cos2x
=√2(√2/2sin2x+√2/2cos2x)
=√2sin(2x+π/4)
故函数的周期T=2π/2=π
函数的最大值为√2
2由f(θ+π/8)=√2/3
即√2sin(2(θ+π/8)+π/4)=√2/3
即sin(2θ+π/4+π/4)=1/3
即sin(2θ+π/2)=1/3
即cos2θ=1/3
则sin2θ=2√2/3
即tan2θ=sin2θ/cos2θ=1/2√2=√2/4.
1解f(x)=sin2x+cos2x
=√2(√2/2sin2x+√2/2cos2x)
=√2sin(2x+π/4)
故函数的周期T=2π/2=π
函数的最大值为√2
2由f(θ+π/8)=√2/3
即√2sin(2(θ+π/8)+π/4)=√2/3
即sin(2θ+π/4+π/4)=1/3
即sin(2θ+π/2)=1/3
即cos2θ=1/3
则sin2θ=2√2/3
即tan2θ=sin2θ/cos2θ=1/2√2=√2/4.