(1)在△ABC中,∠C=90°,AC+BC=8,
∵AC=2,
∴BC=6;
∵以O为圆心的⊙O分别与AC,BC相切于点D,E,
∴四边形OECD是正方形,
tan∠AOD= = = ,解得OD= ,
∴圆的半径为 .
(2)∵AC=x,BC=8-x,
在直角三角形ABC中,tan∠B= = ,
∵以O为圆心的⊙O分别与AC,BC相切于点D,E,
∴四边形OECD是正方形.
tan∠B=tan∠B= = = ,
解得y=- x2+x.
(1)在△ABC中,∠C=90°,AC+BC=8,
∵AC=2,
∴BC=6;
∵以O为圆心的⊙O分别与AC,BC相切于点D,E,
∴四边形OECD是正方形,
tan∠AOD= = = ,解得OD= ,
∴圆的半径为 .
(2)∵AC=x,BC=8-x,
在直角三角形ABC中,tan∠B= = ,
∵以O为圆心的⊙O分别与AC,BC相切于点D,E,
∴四边形OECD是正方形.
tan∠B=tan∠B= = = ,
解得y=- x2+x.