解题思路:欲证DG∥BC,则要证明∠1=∠3,因为∠1=∠2,故证∠2=∠3,由题干条件能推出EF∥CD,然后利用平行线的性质即可证明.
DG∥BC.
理由:
∵CD⊥AB于D,EF⊥AB于F,
∴EF∥CD,
∴∠2=∠3,
∵∠1=∠2,
∴∠1=∠3,
∴DG∥BC.
点评:
本题考点: 平行线的判定与性质;垂线.
考点点评: 本题考查平行线的判定与性质,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键.
解题思路:欲证DG∥BC,则要证明∠1=∠3,因为∠1=∠2,故证∠2=∠3,由题干条件能推出EF∥CD,然后利用平行线的性质即可证明.
DG∥BC.
理由:
∵CD⊥AB于D,EF⊥AB于F,
∴EF∥CD,
∴∠2=∠3,
∵∠1=∠2,
∴∠1=∠3,
∴DG∥BC.
点评:
本题考点: 平行线的判定与性质;垂线.
考点点评: 本题考查平行线的判定与性质,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键.