证明:
1)∵CE⊥BD,
∴∠2+∠3=90°,
又∵∠1+∠2=90°,
∴∠1=∠3,
∵AD∥BC,∠ABC=90°,
∴∠A=90°=∠ABC,
又∵AB=BC,
∴△ABD≌△BCE,
∴BE=AD
(2)∵∠ABC=90°,AB=BC,
∴∠BAC=45°,
∵∠BAD=45°,
∴∠DAC=45°=∠EAC
又∵AE=BE=AD,AC=AC,
∴△ACE≌△ACD,
∴CD=CE,
∴点C在DE的垂直平分线上,
∵AD=BE=AE,
∴点A在DE的垂直平分线上
∴AC垂直平分DE
(3)由(1)得CE=BD,
由(2)得CD=CE,
∴CD=CE,
即△AED是等腰三角形.