证明:∵E是CD中点,∴DE=CE;
又∵AD=BC,∠D=∠BCE=90°,
∴△DEA≌△CEB,即AE=BE;
∵GF∥AB,
∴ EG/EA=EF/EB,即AG/AE=BF/BE ,
∵AE=BE,则AG=BF;
在Rt△ABC中,BF⊥AC,则△ABF∽△BCF,
∴BF 2 =AF•FC,即AG 2 =AF•FC.
证明:∵E是CD中点,∴DE=CE;
又∵AD=BC,∠D=∠BCE=90°,
∴△DEA≌△CEB,即AE=BE;
∵GF∥AB,
∴ EG/EA=EF/EB,即AG/AE=BF/BE ,
∵AE=BE,则AG=BF;
在Rt△ABC中,BF⊥AC,则△ABF∽△BCF,
∴BF 2 =AF•FC,即AG 2 =AF•FC.