2:由余弦公式c^2=a^2+b^2-2abcosC=a^2+b^2-(√3)ab
所以c^2=(a+b)^2-(2+√3)ab *
设l=a+b+c
则由*式得到c^2=(l-c)^2-(2+√3)ab>=(l-c)^2-(2+√3)[(a+b)/2]^2
=(l-c)^2-(2+√3)[(l-c)/2]^2=[(2-√3)/4](l-c)^2
=[(√3-1)(l-c)/2√3]^2
将c代入解得l
2:由余弦公式c^2=a^2+b^2-2abcosC=a^2+b^2-(√3)ab
所以c^2=(a+b)^2-(2+√3)ab *
设l=a+b+c
则由*式得到c^2=(l-c)^2-(2+√3)ab>=(l-c)^2-(2+√3)[(a+b)/2]^2
=(l-c)^2-(2+√3)[(l-c)/2]^2=[(2-√3)/4](l-c)^2
=[(√3-1)(l-c)/2√3]^2
将c代入解得l