(1)面积S=∫[(1-y)^(1/2)-y+1]dy
=[(-2/3)(1-y)^(3/2)-y^2/2+y]│
=2/3-1/2+1
=7/6
(2)旋转体的体积=π∫(x+1)²dx+π∫(1-x²)²dx
=π[(x+1)³/3]│+π[x-2x³/3+x^5/5]│
=π(1-0)/3+π(1-2/3+1/5)
=13π/15.
(1)面积S=∫[(1-y)^(1/2)-y+1]dy
=[(-2/3)(1-y)^(3/2)-y^2/2+y]│
=2/3-1/2+1
=7/6
(2)旋转体的体积=π∫(x+1)²dx+π∫(1-x²)²dx
=π[(x+1)³/3]│+π[x-2x³/3+x^5/5]│
=π(1-0)/3+π(1-2/3+1/5)
=13π/15.