解题思路:根据切线的判定方法知,能使BC成为切线的条件就是能使AB垂直于BC的条件,进而得出答案即可.
当△ABC为直角三角形时,即∠ABC=90°时,
BC与圆相切,
∵AB是⊙O的直径,∠ABC=90°,
∴BC是⊙O的切线,(经过半径外端,与半径垂直的直线是圆的切线).
故答案为:∠ABC=90°.
点评:
本题考点: 切线的判定.
考点点评: 此题主要考查了切线的判定,本题是一道典型的条件开放题,解决本类题目可以是将最终的结论当做条件,而答案就是使得条件成立的结论.
解题思路:根据切线的判定方法知,能使BC成为切线的条件就是能使AB垂直于BC的条件,进而得出答案即可.
当△ABC为直角三角形时,即∠ABC=90°时,
BC与圆相切,
∵AB是⊙O的直径,∠ABC=90°,
∴BC是⊙O的切线,(经过半径外端,与半径垂直的直线是圆的切线).
故答案为:∠ABC=90°.
点评:
本题考点: 切线的判定.
考点点评: 此题主要考查了切线的判定,本题是一道典型的条件开放题,解决本类题目可以是将最终的结论当做条件,而答案就是使得条件成立的结论.