过点P(0,2)的且斜率为k的直线l与C为圆心的圆C:x^2+y^2-4x-12=0交于A,B两点,O为原点,M是AB的

3个回答

  • L的方程为 y=kx+2 ,圆方程化为 (x-2)^2+y^2=16 ,圆心C(2,0),半径 r=4 .

    1)因为 M 为AB中点,且 CA丄CB ,

    所以 C 到直线L的距离CM等于 √2/2*r=2√2 ,

    即 |2k+2|/√(k^2+1)=2√2 ,

    解得 k=1 .

    2)将 y=kx+2 代入圆的方程,得 (x-2)^2+(kx+2)^2=16 ,

    化简得 (k^2+1)x^2+4(k-1)x-8=0 ,

    设 A(x1,y1),B(x2,y2),M(m,n),

    则 2m=x1+x2=-4(k-1)/(k^2+1) ,2n=y1+y2=k(x1+x2)+4=(4k+4)/(k^2+1) ,

    PC=(2,-2),OM=(m ,n),

    由已知,PC*OM=2m-2n=4 ,

    所以 -4(k-1)/(k^2+1)-(4k+4)/(k^2+1)=4 ,

    解得 k=-1 ,

    因此,所求直线L的方程为 x+y-2=0 .

    (这么难的题,怎么一分也没有?)