(1)C(4,0)、E(2,4);
(2)设直线EC的解析式为:y=kx+b(k≠0).
∵点C(4,0)、E(2,4)在该函数图象上,
∴点C(4,0)、E(2,4)满足该函数的解析式y=kx+b(k≠0),
∴
0=4k+b
4=2k+b ,
解得,
k=-2
b=8 ,
∴直线EC的解析式为:y=-2x+8;
(3)当P与点E、C重合时,或点P在∠AOC的角平分线与EC的交点时,图中存在与△AOP全等的三角形(如图所示);
证明:①当P与点E重合时.
在△AOE和△ECB中,
AO=BC(正方形的边长都相等),
AE=BE(E点是AB的中点),
∠OAE=∠CBE=90°(正方形的四个角都是直角),
∴△AOE≌△ECB,即△AOP≌△PCB(HL);
此时P(2,4);
②当P与点C重合时,不符合题意;
③当点P在∠AOC的角平分线与EC的交点时.
在△AOP与△COP中,
OA=OC(正方形的边长),
OP=PO(公共边),
∠AOP=∠COP,
∴△AOP≌△COP(SAS);
∴PA=PC(全等三角形的对应边相等);
∵点P在直线EC上,
∴设P(x,-2x+8),
∴x 2+(-2x+4) 2=(x-4) 2+(-2x+8) 2,
解得,x=
8
3 ;
∴-2x+8=
8
3 ,
∴P(
8
3 ,
8
3 ).