答不能(1)∵点P为BC的三等分点,
∴BP= BC=4,PC= BC=2,
在直角△BPE中,∠B=60°,
∴∠BPE=30°,
∴BE= BP=2,
∴BE=CP,
又∵∠MPN=60°,
∴△EPF是等边三角形;
(2)△ABC的面积是:×6×6× =9 ;
BP=x,则BE= BP= x.EP= BE= x,PC=6-x,PF= PC= (6-x).
则△BPE的面积是:BE•EP= × • x= x2,
△PCF的面积是:PC•PF= (6-x)• (6-x)= (6-x)2.
∴四边形AEPF面积的y=9 - x2- (6-x);
即y=- x2+6 x-9 (3<x<6);
(3)∵在△BPE中,∠B=60°,
∴∠BEP+∠BPE=120°,
∵∠MPN=60°,
∴∠BPE+∠FPC=120°,
∴∠BEP=∠FPC,
又∵∠B=∠C,
∴△BPE∽△CFP,
∴ = ,
设BP=x,则CP=6-x.
∴ = ,
解得:x=2或4.
当x=2时,在三角形△BEP中,∠B=60°,BE=4,BP=2,
则PE=2 ;
当x=4时,在三角形△BEP中,∠B=60°,BE=4,BP=4,
则△BEP是等边三角形,∴PE=4.
故PE=2 或4