设所求点坐标为P(x,y),则|PM|²+|PN|²=[(x-1)^2+y^2]+[(x+1)^2+y^2]=2x^2+2y^2+2.
由于P在直线2x-y-1=0上,则y=2x-1.代入上式中得:
|PM|²+|PN|²=2x^2+2(2x-1)^2+2=10x^2-8x+4=10(x-2/5)^2+12/5≥12/5
故最小值为12/5,此时所求P点坐标为(2/5,-1/5).
设所求点坐标为P(x,y),则|PM|²+|PN|²=[(x-1)^2+y^2]+[(x+1)^2+y^2]=2x^2+2y^2+2.
由于P在直线2x-y-1=0上,则y=2x-1.代入上式中得:
|PM|²+|PN|²=2x^2+2(2x-1)^2+2=10x^2-8x+4=10(x-2/5)^2+12/5≥12/5
故最小值为12/5,此时所求P点坐标为(2/5,-1/5).