(1)已知:有理数m所表示的点到表示数3的点的距离为4个单位,a、b互为相反数,且都不为零,c、d互为倒数.求:2a+2

1个回答

  • 解题思路:(1)先根据有理数m所表示的点到表示数3的点的距离为4个单位求出m的值,再根据a、b互为相反数,且都不为零,c、d互为倒数得出a+b=0,[a/b]=-1,cd=1,再代入代数式进行计算;

    (2)由多项式2A-B的值与字母y的取值无关可求出a、b的值,再代入关于m的方程即可求出m的值.

    (1)∵有理数m所表示的点到表示数3的点的距离为4个单位,

    ∴m=7或m=-1,

    ∵a、b互为相反数,且都不为零,c、d互为倒数,

    ∴a+b=0,

    a

    b]=-1,cd=1,

    ∴当m=7时,原式=2(a+b)+([a/b]-3cd)-m

    =2×0+(-1-3)-7

    =-4-7

    =-11;

    当m=-1时,原式=2(a+b)+([a/b]-3cd)-m

    =2×0+(-1-3)+1

    =-4+1

    =-3.

    (2)∵A=ay2-y,B=6y2+2by-4,

    ∴2A-B=2(ay2-y)-(6y2+2by-4)

    =2ay2-2y-6y2-2by+4

    =(2a-6)y2-(2+2b)y+4,

    ∵多项式2A-B的值与字母y的取值无关,

    2a−6=0

    2+2b=0,解得

    a=3

    b=−1,

    ∴原方程可化为

    2×(−1)−3+m

    2=[1/2]×(-1)-3+m+1,解得m=0.

    点评:

    本题考点: 整式的加减;代数式求值.

    考点点评: 本题考查的是整式的加减及代数式求值,熟知整式的加减法则是解答此题的关键.