a^2+b^2+c^2=10a+10b+10根号2c-100
即a^2+b^2+c^2-10a-10b-10根号2c+100=0
(A-5)^2+(B-5)^2+(C-5√2)^2=0
必有 A-5=0 B-5=0 C-5√2=0
则A=5 B=5 C=5√2
a^2+b^2+c^2=10a+10b+10根号2c-100
即a^2+b^2+c^2-10a-10b-10根号2c+100=0
(A-5)^2+(B-5)^2+(C-5√2)^2=0
必有 A-5=0 B-5=0 C-5√2=0
则A=5 B=5 C=5√2