AD与CE交于点O,在AC上截取AF=AE,联接OF
∵∠EAO=∠FAO AO=AO AE=AF
∴AOE ≌△AOF
∴∠AOE=∠AOF
∵∠OAC=½∠BAC ∠OCA=½∠ACB
∴∠OAC+∠OCA=½(∠BAC+∠ACB)=½(180°-∠B)=60°
∴∠AOE=∠OAC+∠OCA=60°
∴∠AOF=60° ∠COD=∠AOE=60°
∴∠COF=180°-∠AOE+∠AOF=60°
∴∠COF=∠COD
∵∠OCF=∠OCD OC=OC
∴COF ≌△COD
∴CF=CD
∵AC=AF+CF
∴AC=AE+CD