A5/B5 =(9A5)/(9B5 )=(A1+A2+A3+...+A9)/(B1+B2+B3+...+B9 )=66/12=11/2.因为对于等差数列AN BN,A1+A2+A3+...+A9=9(A1+A9)/2=4.5(A5+A5)=9A5,同理B1+B2+B3+...+B9=9B5
一道不会的数列提AN BN都是 等差数列A1+A2+A3+...+AN / B1+B2+B3+...+BN = 7N+3
2个回答
相关问题
-
设数列An,Bn 满足a1=b1=6,a2=b2=4,a3=b3=3,若{an+1 -an}是等差数列,{bn+1-bn
-
设数列{an}、{bn}满足:a1=b1=6,a2=b2=4,a3=b3=3,且数列{an+1-an}是等差数列,{bn
-
设数列{an}和{bn}满足a1=b1=6,a2=b2=4,a3=b3=3 ,且数列{an+1-an}是等差数列,{bn
-
数列{an}和{bn}满足an=1n(b1+b2+…+bn)(n=1,2,3…),求证{bn}为等差数列的充要条件是{a
-
设数列{an}和{bn}满足a1=b1=6,a2=b2=3,且数列{a(n+1)-an}是等差数列,数列{bn-2}是等
-
数列an,bn各项均为正数,a1=1,b1=2,a2=3,对任意n,an,bn,an+1成等差数列,bn,an+1,bn
-
数列an,bn 中a1=1,b1=5/2,且a(n+1)=3an-2bn,b(n+1)=5an-4bn,求an,bn
-
数列an,bn满足bn=a1+2a2+3a3...nan\1+2+3+...n,若bn是等差数列,求证an是等差数列
-
有两个等差数列{an},{bn},满足a1+a2+…+an/(b1+b2+…+bn)=5n/(3n+6),则a7/b7=
-
数列{an}满足an=n(n+1)^2,是否存在等差数列{bn}使an=1*b1+2*b2+3*b3+...n*bn,对