解题思路:(1)利用三角函数的和角公式,结合三角函数的诱导公式化简即可;
(2)题目中条件:“x0为f(x)的一个极值点”可得,x0是其导数的一个零点,由此得到一个方程,解之即得;
(3)由题意得:“x0在第二或第四象限内”,结合正切函数的图象与性质讨论两极值点的差的范围.
(Ⅰ)证明:由函数f(x)的定义,对任意整数k,有
f(x+2kπ)-f(x)=(x+2kπ)sin(x+2kπ)-xsinx=(x+2kπ)sinx-xsinx=2kπsinx.
(Ⅱ)证明:函数f(x)在定义域R上可导,f'(x)=sinx+xcosx①
令f'(x)=0,得sinx+xcosx=0.
显然,对于满足上述方程的x有cosx≠0,
上述方程化简为x=-tanx.此方程一定有解.f(x)的极值点x0一定满足tanx0=-x0.
由sin2x=
sin2x
sin2x+cos2x=
tan2x
1+tan2x,得sin2x0=
tan2x0
1+tan2x0.
因此,[f(x0)]2=x02sin2x0=
x04
1+x02.
(Ⅲ)证明:设x0>0是f'(x)=0的任意正实数根,即x0=-tanx0,
则存在一个非负整数k,使x0∈([π/2]+kπ,π+kπ),即x0在第二或第四象限内.
由①式,f'(x)=cosx(tanx+x)在第二或第四象限中的符号可列表如下:
所以满足f'(x)=0的正根x0都为f(x)的极值点.
由题设条件,a1,a2,an,为方程x=-tanx的全部正实数根且满足a1<a2<<an<,
那么对于n=1,2,an+1-an=-(tanan+1-tanan)=-(1+tanan+1•tanan)tan(an+1-an). ②
由于[π/2]+(n-1)π<an<π+(n-1)π,[π/2]+nπ<an+1<π+nπ,
则[π/2]<an+1-an<[3π/2],
由于tanan+1•tanan>0,由②式知tan(an+1-an)<0.
由此可知an+1-an必在第二象限,
即an+1-an<π.综上,[π/2]<an+1-an<π.
点评:
本题考点: 利用导数研究函数的极值;函数零点的判定定理;三角函数中的恒等变换应用.
考点点评: 本题考查了三角函数的和角公式、诱导公式,函数的极值点、正切函数的图象与性质问题.