已知函数f(x)=ax-1(a不等于0),且f(2)f(5)f(14)成等比数列,设an=f(n)(

1个回答

  • f(x)=ax-1(a不等于0),且f(2)f(5)f(14)成等比数列,设an=f(n)(n属于N*),

    令,a1=f(2),a2=f(5),a3=f(14).有

    a1=2a-1,a2=5a-1,a3=14a-1.

    f(2)f(5)f(14)成等比数列,

    (a2)^2=a1*a3,

    (5a-1)^2=(2a-1)(14a-1),

    a(a-2)=0,(a≠),

    a=2.

    a1=f(2)=3,a2=f(5)=9,a3=f(14)=27.

    q=a2/a1=3,

    ∴Sn=a1(1-q^n)/(1-q)=3(1-3^n)(1-3)=-3/2(1-3^n).

    bn=2^n,数列{anbn}有,

    {a1b1}={3*2}=6,

    {a2b2}={9*2^2}=36,

    {a3b3}={27*2^3}=216.

    {a2b2}/{a1b1}=36/6=6=q2

    数列{anbn}是公比为q2=6,的等比数列,有

    Tn={a1b1}[1-(q2)^n]/(1-q2)

    =6[1-6^n]/(1-6)

    =-6/5(1-6^n).