先有的向量
希腊的亚里士多德(前384-前322)已经知道力可以表示成向量
德国的斯提文(1548?-1620?)在静力学问题上,应用了平行四边形法则.伽利略(1564-1642)清楚地叙述 了这个定律.
稍后丹麦的未塞尔(1745-1818),瑞士的阿工(1768-1822)发现了复数的几何表示,德国高斯(1777-1855)建立了 复平面的概念,从而向量就与复数建立了一一对应,这不但为虚数的现实化提供了可能,也可以用复数运算来研究 向量.
英国数学家亥维赛(1850-1925)在向量分析上作出了许多贡献.他首先给出了向量的定义:向量 =a +b +c .这里 、 、 分别是沿着x、y、z轴方向的单向矢量,系数a、b、c是实数,称为分量等等.至于n 维向量的理论是由德国数学家格拉斯曼1844年引了的.