1 ABC为实数 A+B+C=2*根号(A-1)+4*根号(B+1)+6*根号(C-2)-12 Q求A(B+C)+B(A

1个回答

  • A+B+C=2√(A-1)+4√(B+1)+6√(C-2)-12

    [(A-1)-2√(A-1)+1]+[(B+1)-4√(B+1)+4]+[C-2+9-6√(C-2)]=0

    [√(A-1)-1]^2+[√(B+1)-2]^2+[√(C-2)-3]^2=0

    A=2

    B=3

    C=11

    代入

    122

    2A+2B-4√(A-1)-8√(B-2)+C-6√(C-3)+10=0

    [2(A-1)-4√(A-1)+2]+[2(B-2)-8√(B-2)+8]+[C-3-6√(C-3)+9]=0

    √(A-1)=1

    A=2

    √(B-2)=2

    B=6

    √(C-3)=3

    C=12

    求A+B+C=20

    3.[1+1/n-1/(n+1)]^2

    =[1+1/n(n+1)]^2

    =1+2/n(n+1)+[1/n(n+1)]^2

    =1+2/n(n+1)+[1/n-1/(n+1)]^2(平方展开)

    =1+1/n^2+1/(n+1)^2

    所以S=(1+1/1-1/2)+(1+1/2-1/3)+……+(1+1/2003-1/2004)

    =2003-1/2004

    所以S的整数部分是2002

    正数abc满足a+c=2b

    求证

    1/(√a+√b)+1/(√b+√c)=2/(√a+√c)

    a=b+t

    c=b-t

    1/(√a+√b)=(√a-√b)/(√a+√b)(√a-√b)=(√a-√b)/t

    1/(√b+√c)=(√b-√c)/(√b+√c)(√b-√c)=(√b-√c)/t

    2/(√a+√c)=2(√a-√c)/(√a+√c)(√a-√c)=2(√a-√c)/2t=(√a-√c)/t

    证完啦