高数,求极限1.lim(x→0)(tanx-sinx)/x^32.lim(x→派/2)sinx^(tanx)3.函数y=

4个回答

  • 1.用定理lim[x→0] sinx/x=1

    lim[x→0] (tanx-sinx)/x³

    =lim[x→0] (sinx/cosx-sinx)/x³

    =lim[x→0] (sinx-sinxcosx)/(x³cosx)

    =lim[x→0] sinx(1-cosx)/(x³cosx)

    =lim[x→0] sin³x(1-cosx)/(x³sin²xcosx)

    =lim[x→0] (sinx/x)³·(1-cosx)/(sin²xcosx)

    =lim[x→0] (sinx/x)³·(1-cosx)/[(1-cos²x)cosx]

    =lim[x→0] (sinx/x)³·(1-cosx)/[(1+cosx)(1-cosx)cosx]

    =lim[x→0] (sinx/x)³·1/[(1+cosx)cosx]

    =1·1/(1+1)

    =1/2

    2..sn=n√n!/n

    0