y’=sin{f[sin(x)]}’
=cos{f【sin(x)]}*f ' [sin(x)]*cosx
则y‘(0)=cos{f【sin(0)]}*f ' [sin(0)]*cos0
又f ' [sin(0)]=f ’ (0)=0
所以y‘(0)=0
y’=sin{f[sin(x)]}’
=cos{f【sin(x)]}*f ' [sin(x)]*cosx
则y‘(0)=cos{f【sin(0)]}*f ' [sin(0)]*cos0
又f ' [sin(0)]=f ’ (0)=0
所以y‘(0)=0