已知{an}为等比数列,其前n项和为Sn,且Sn=2∧n+a,若bn=(2n-1)an,求bn的前

1个回答

  • 1,求出an通项公式

    an = Sn - Sn-1 = (2^n+a) - (2^n-1 +a) = 2^(n-1)

    q = an/an-1 = 2^(n-1)/2^(n-2) = 2

    由等比数列求和公式

    Sn = (a1- an*q)/(1-q) = 2^n -a1

    所以 -a1 = a

    a1 = S1 = 2^1 + a = 2+a

    所以 2+a = -(-a1) = -a

    a = -1

    a1 = 1

    所以 an = 1* 2^(n-1) = 2^(n-1)

    2

    设{Cn} = {2n-1},Cn公差 d = 2

    q Tn - Tn = (c1a2+c2a3+c3a4+...+ cnan+1) - (c1a1+c2a2+c3a3+...+ cnan)

    = -c1a1 + (-d)a2 + (-d)a3+...+ (-d) an + cnan+1

    = -1 -d * (a2- an *q)/(1 -q) + cnan+1

    = -1 -2* (2^n -2) + (2n-1) 2^n

    = (2n-1 -2) 2^n -1 -2*(-2)

    = (2n-3) 2^n +3

    2 Tn - Tn = (2n-3) 2^n +3

    Tn = (2n-3) 2^n +3