(2009•天心区)如图在一个正方形内画中、小两个正方形,使三个正方形具有公共顶点,这样大正方形被分割成了正方形区域甲和

1个回答

  • 解题思路:周长之比就等于边长之比,设甲、乙、丙的边长为4a,5a,7a;根据“正方形的面积=边长×边长”分别求出大正方形和中正方形的面积,然后根据“大正方形的面积-中正方形的面积=丙的面积”列出方程,求出a2=3;进而求出大正方形的面积.

    周长之比就等于边长之比,设甲、乙、丙的边长为4a,5a,7a

    49a2-25a2=72

    a2=3

    大正方形的面积:49a2=49×3=147.

    答:大正方形的面积是147.

    点评:

    本题考点: 组合图形的面积.

    考点点评: 解答此题的关键:根据题意,设出甲、乙、丙的边长,进而根据正方形的面积计算公式分别求出大正方形和中正方形的面积,然后根据大正方形的面积、中正方形的面积和丙的面积三者之间的关系列出方程,求出a2=3;进而求出大正方形的面积.