求导arctany/xIn√(x²+y²)(x²+y²)sin3/(x²

2个回答

  • 全微分吗?

    z=arctan(y/x)

    ∂z/∂x=1/(1+y²/x²)*y=x²y/(x²+y²)

    ∂z/∂y=1/(1+y²/x²)*1/x=x/(x²+y²)

    dz=x²y/(x²+y²)dx+x/(x²+y²)dy

    z=ln√(x²+y²)

    ∂z/∂x=1/√(x²+y²)*1/2√(x²+y²)*2x=x/(x²+y²)

    ∂z/∂y=1/√(x²+y²)*1/2√(x²+y²)*2y=y/(x²+y²)

    dz=x/(x²+y²)dx+y/(x²+y²)dy

    z=(x²+y²)sin[3/(x²+y²)]

    ∂z/∂x=2xsin[3/(x²+y²)]+(x²+y²)*cos[3/(x²+y²)]*[-6x/(x²+y²)²]=2xsin[3/(x²+y²)]-6xcos[3/(x²+y²)]*/(x²+y²)

    ∂z/∂y=2ysin[3/(x²+y²)]+(x²+y²)*cos[3/(x²+y²)]*[-6y/(x²+y²)²]=2ysin[3/(x²+y²)]-6ycos[3/(x²+y²)]*/(x²+y²)

    dz=2xsin[3/(x²+y²)]-6xcos[3/(x²+y²)]*/(x²+y²)dx+2ysin[3/(x²+y²)]-6ycos[3/(x²+y²)]*/(x²+y²)dy