n=1时左边=1 右边=1
n=2时左边=4 右边=4
设n=k时原式1*k+2(k-1)+3(k-2)+.+k*1=1/6k(k+1)(k+2)成立
当n=k+1时 1*(k+1)+2*k+3*(k-1)+.+k*2+(k+1)*1 = S
下式减去上式得到
1+2+3+.+k+(k+1)=S-1/6k(k+1)(k+2) 左边等于(k+1)(k+2)/2
S=1/6*(k+1)(k+2)(k+3)
得证
n=1时左边=1 右边=1
n=2时左边=4 右边=4
设n=k时原式1*k+2(k-1)+3(k-2)+.+k*1=1/6k(k+1)(k+2)成立
当n=k+1时 1*(k+1)+2*k+3*(k-1)+.+k*2+(k+1)*1 = S
下式减去上式得到
1+2+3+.+k+(k+1)=S-1/6k(k+1)(k+2) 左边等于(k+1)(k+2)/2
S=1/6*(k+1)(k+2)(k+3)
得证