(Ⅰ)(i)∵ a n =3• 2 n ,n∈ N * ,
∴ a n+1 =3× 2 n+1 =2×(3× 2 n ) =2×a n=2a n+0,
∴p=2,q=0
∴数列{a n}是“M”数列.
(ii)当n=1时, b 1 = S 1 = 1 2 +1 =2.
当n≥2时,b n=S n-S n-1=n 2+n-(n-1) 2-(n-1)=2n.
上式对于n=1时也成立,
∴b n=2n(n∈N *).
∴b n+1=2(n+1)=2n+2=b n+2.
∴数列{b n}是“M”数列,且p=1,q=2.
(Ⅱ)∵ a n + a n+1 = 2 n (n∈N *),∴ a 2 + a 3 = 2 2 , a 4 + a 5 = 2 4 ,… a 2012 + a 2013 = 2 2012 .
S 2013=a 1+a 2+a 3+…+a 2013=2+2 2+2 4+…+2 2012= 2+
4×( 4 1006 -1)
4-1 =
2 2014 +2
3 .
故数列{a n}前2013项的和S 2013=
2 2014 +2
3 .