因为:
(a-b)^2+(b-c)^2+(c-a)^2
=(a^2-2ab+b^2)+(b^2-2bc+c^2)+(a^2-2ca+c^2)
=2(a^2+b^2+c^2-ab-bc-ca)
所以:
a^2+b^2+c^2-ab-bc-ca
=(1/2)*[(a-b)^2+(b-c)^2+(c-a)^2]
=(1/2)*[1+1+4]
=3
因为:
(a-b)^2+(b-c)^2+(c-a)^2
=(a^2-2ab+b^2)+(b^2-2bc+c^2)+(a^2-2ca+c^2)
=2(a^2+b^2+c^2-ab-bc-ca)
所以:
a^2+b^2+c^2-ab-bc-ca
=(1/2)*[(a-b)^2+(b-c)^2+(c-a)^2]
=(1/2)*[1+1+4]
=3