1:令n=1 在Sn=2an-2n中有a1=2
Sn=2an-2n
S(n-1)=2a(n-1)-2(n-1)
an=Sn-S(n-1)=2an-2n-(2a(n-1)-2(n-1))
=2an-2a(n-1)-2
an=2a(n-1)+2
令an+k=2[a(n-1)+k] 得 k=2
所以 an+2=2[a(n-1)+2]
即 (an+2)/[a(n-1)+2] =2
由等比数列的定义知 an+2是以2为首项,2为公比的等比数列
2:由1得等比数列的通项公式为:an+2=2*n
所以bn=log(2)(an+2)=log(2)(2*n)=n
bn/(an+2)=n/2*n
Tn=1/2+2/4+3/8+...+n/2*n (1式)
1/2Tn=1/4+2/8+3/16+...+(n-1)/2*n+n/2*(n+1) (2式)
(1式)-(2式)
1/2Tn=1/2+1/4+1/8+...+1/n-n/2*(n+1)
=1-(1/2)*n-n/2*(n+1)
Tn=2-2(1/2)*n-2n/2*(n+1)