b²=√3bc+a²-c²
b²+c²-a²=√3bc
cosA=(b²+c²-a²)/2bc=√3/2
A=π/6
sin(C-B)+2sinBcosC
=sinCcosB-cosCsinB+2sinBcosC
=sinCcosB+cosCsinB
=sin(C+B)=sinA=1/2
b²=√3bc+a²-c²
b²+c²-a²=√3bc
cosA=(b²+c²-a²)/2bc=√3/2
A=π/6
sin(C-B)+2sinBcosC
=sinCcosB-cosCsinB+2sinBcosC
=sinCcosB+cosCsinB
=sin(C+B)=sinA=1/2