解题思路:观察不难发现,每三次旋转为一个循环组依次循环,第7个直角三角形的直角顶点与第6个直角三角形的直角顶点重合,然后求出一个循环组旋转过的距离,即可得解;
用2013除以3,根据商和余数的情况确定出直角顶点的坐标即可.
由图可知,第4个三角形与第1个三角形的所处形状相同,
即每三次旋转为一个循环组依次循环,
∵一个循环组旋转过的长度为12,2×12=24,
∴第7个直角三角形的直角顶点与第6个直角三角形的直角顶点重合,为(24,0);
∵2013÷3=671,
∴第(2013)的直角顶点为第671循环组的最后一个直角三角形的直角顶点,
12×671=8052,
∴第(2013)的直角顶点的坐标是(8052,0).
故答案为:(24,0);(8052,0).
点评:
本题考点: 坐标与图形变化-旋转.
考点点评: 本题考查了坐标与图形变化-旋转,是对图形变化规律,观察出每三次旋转为一个循环组依次循环,并且下一组的第一个直角三角形与上一组的最后一个直角三角形的直角顶点重合是解题的关键,也是本题的难点.