对不起,帮不了你.
f(x)∈[a,b],在(a,b)可导∃ε∈(a,b) sint [f(b)-f(a)]/[lnb-lna]
1个回答
相关问题
-
F(x)=f(x)/x^2,f(x)在[a,b]连续,在(a,b)可导,如何证明F(x)在[a,b]连续,在(a,b)可
-
设f(x)在[a,b]上连续,在(a,b)内可导,f(a)f(b)>0,f(a)f[(a+b)/2]
-
设f(x)在[a,b]上可导,f′(x)在[a,b]上可积,f(a)=f(b)=0,求证:所有x属于[a,b],有|f(
-
设函数f(x)在[a,b]上连续,在(a,b)内可导,f(a)>a,f(b)
-
设f(x)在[a,b]上一阶可导在,(a,b)内二阶可导,且f(a)=f(b)=0,
-
设f(x)在[a,b]上连续,(a,b)内可导,且f'(x)≠0,f(a)f(b)
-
设f(x)在[a,b]二阶可导,f'(x)>0,f''(x)>0,证明:(b-a)f(a)b)f(x)dx
-
设f(x)在[a,b]上连续,f(a)=f(b)=0,f(x)在(a,b)内二阶可导,且f'+(a)>0.求证在(a,b
-
设f(x)在【a,b】上连续,在(a,b)内二阶可导,且f(a)=f(b)=f(c),a
-
若函数f(x)在闭区间[a,b]上连续,在(a,b)可导,且f(a)=b,f(b)=a.