如图,抛物线y=x^2+x-4与y轴交于点A,E(0,b)为y轴上一动点,过点E的直线y=x+b与抛物线交于点B、C.(

3个回答

  • 1.(0.-4)

    2.y=x^2+x-4=x求交点 为 2 .2 和-2 .-2 到y轴距离一样都是2 底 都是0A=4 所以相等

    成立 b大于-4时 因为y=x^2+x-4=x+b 即x^2=b+4>0 肯定能解出X的值 而且是关于Y轴对称的 同上 到Y轴距离相等 都等于根号下b+4

    3 以BC为斜边的直角三角型 即BC为直径的圆能不能过o点 由2可知 BC是关于E点对称的 (自己想想) 那么E是圆心 OE是半径 即b是半径呗 那么根号下b+4 乘以根号二 =EB=EC=半径 那么根号下2b+8=b 所以 b=4或-2舍